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1. Introduction

A central goal of the B physics program is to accurately determine the CKM parameter

|Vub|. A complication is that experiments cannot measure the total rate for inclusive

B̄ → Xu`ν̄` decays, because part of the available phase space is dominated by a much

larger background from B̄ → Xc`ν̄` decays. In fact, data for inclusive b → u transitions

is available only in the shape-function region, where the final-state hadronic jet carries a

large energy on the order of the b-quark mass mb, but a relatively small invariant mass

squared on the order of ΛQCDmb.

The study of inclusive B decays in the shape-function region using soft-collinear ef-

fective theory (SCET) has received much attention in recent years [1 – 5]. Predictions for

decay distributions are available in the form of factorization formulas which separate the

physics from the three scales mb À
√

ΛQCDmb À ΛQCD. At leading order in 1/mb, the

factorization formula takes the form

H · J ⊗ S. (1.1)

The hard function H and the jet function J are perturbatively calculable functions de-

pending on quantities at the hard scale mb and the hard-collinear (jet) scale
√

ΛQCDmb

respectively. The shape function S is a non-perturbative function defined in terms of a non-
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local HQET matrix element [6]. There are two basic strategies for reducing shape-function

related hadronic uncertainties in the measurement of |Vub|. The first is to extract the shape

function in one process and use it as input for other processes, the second is to construct

shape-function independent relations between different decay distributions. Common im-

plementations of these strategies use B̄ → Xsγ in combination with B̄ → Xu`ν̄` decay

spectra [7 – 13].

Assuming the power counting m2
c ∼ ΛQCDmb for the charm-quark mass, parts of the

phase space for B̄ → Xc`ν̄` decays lie in the shape-function region [14, 15]. Work performed

in [16] showed that the singly differential spectrum in a certain kinematic variable has much

in common with the P+ spectrum in B̄ → Xu`ν̄` decays. In particular, at tree level and

excluding power corrections, this spectrum is directly proportional to the leading-order

shape function. This raised the possibility of using data from inclusive decays into charm

quarks to learn about the leading-order shape function. The analysis in [16] concentrated

on the classification of sub-leading effects in the ΛQCD/mb expansion at tree level, while

the question of radiative corrections was left open.

In this paper we calculate the perturbative corrections to B̄ → Xc`ν̄` decays in the

shape-function region. We show that our one-loop result for the hadronic tensor can be

written in the factorized form (1.1). Moreover, the hard function H and the shape function

S are identical for inclusive b → u and b → c transitions; the charm-quark mass affects

only the jet function J . This allows us to construct a simple, shape-function independent

relation between the B̄ → Xc`ν̄` and B̄ → Xu`ν̄` decay spectra, which may provide an

independent cross-check for the determination of |Vub|.

The paper is organized as follows. In section 2 we discuss some aspects of SCET

needed in our analysis. We use this to calculate the hadronic tensor at one loop in sec-

tion 3. In section 4 we present results for the partially integrated spectrum needed in

our phenomenological discussion and examine some issues related to the definition of the

charm-quark mass. A relation between partially integrated b → u and b → c spectra is

derived and studied in section 5. We conclude in section 6.

2. SCET for B̄ → Xc`ν̄` transitions

In this section we review some aspects of SCET [17 – 20] needed to describe inclusive b → c

transitions in the shape-function region. The effective theory facilitates the separation of

scales and sets up a systematic expansion in the small parameter

λ2 ∼
m2

c

m2
b

∼
ΛQCD

mb
. (2.1)

At the level of Feynman diagrams, this separation of scales is achieved by evaluating QCD

integrals using the method of regions [21], and the construction of SCET is closely related to

this diagrammatic analysis. To apply this method one first identifies the momentum regions

which give rise to leading-order on-shell singularities in loop diagrams. The integrand is

expanded in λ as appropriate for the particular region before performing the integral. Once

– 2 –



J
H
E
P
0
5
(
2
0
0
6
)
0
5
6

all the regions are identified, their sum is equal to the full theory integral, up to higher-order

terms in λ.

Applying the method of regions to inclusive b → u transitions in the shape-function

region, where the jet momentum and the jet energy satisfy p2 ∼ m2
bλ

2 and E ∼ mb, one

finds contributions from hard, hard-collinear, and soft regions. SCET is constructed in

such a way that the hard-collinear and soft regions are contained in effective theory fields

and operators, while the hard region is contained in Wilson coefficients multiplying these

operators. For the b → c transitions dealt with in this paper, we will always work in the

kinematic region where the jet momentum and the jet energy satisfy p2 −m2
c ∼ p2 ∼ m2

bλ
2

and E ∼ mb. It is apparent that the set of regions is identical to that in the charmless case;

one must replace p2 → p2−m2
c in the hard-collinear propagators, but the λ expansion, and

thus the regions calculation, works the same. Therefore, the relevant version of SCET is

very similar to that for charmless decays. The objects of interest are the SCET Lagrangian

and currents, which we now discuss in turn.

2.1 SCET Lagrangian and mass renormalization

The leading-order SCET Lagrangian for a hard-collinear quark with mass mc interacting

with soft and hard-collinear gluons is (see for instance [22, 23, 16])

L = ξ̄

(

in−D + (iD/⊥hc − mc)
1

in+Dhc
(iD/⊥hc + mc)

)

n/+

2
ξ + LYM. (2.2)

Here ξ is a hard-collinear quark field, and the covariant derivatives are defined as in−D =

in−∂ + gn−Ahc + gn−As and iDhc = i∂ + gAhc. We have introduced two light-like vectors

n±, which satisfy n+n− = 2. The Yang-Mills Lagrangian LYM for the soft (hard-collinear)

sector is the same as in QCD, but restricted to soft (hard-collinear) fields.

In massless SCET, the Lagrangian is not renormalized, in the sense that no new oper-

ators or non-trivial Wilson coefficients are induced by radiative corrections. The reasoning

for this was given in [20], and involves showing that certain momentum regions give rise to

scaleless integrals. These arguments also apply to the SCET Lagrangian (2.2), because the

λ expansion is unaffected by the presence of a quark mass in the hard-collinear propagators,

as we have emphasized above.

On the other hand, mass renormalization plays a non-trivial role in our analysis, and

will be needed in the next section when we calculate the one-loop jet function. We pause

here to discuss mass renormalization in SCET. Later on we will study the differential

spectrum in the variable

u = n−p − m2
c/n+p ,

where mc may be taken as the pole mass (in the massless case u reduces to the variable

p+ = n−p). In section 4.1, we will discuss alternative mass definitions which induce a

change in the jet function of order αs.

Mass renormalization in SCET is closely related to the usual QCD prescription, which

follows from the observation that the self-energy diagram in SCET can be obtained from

the λ expansion of the corresponding QCD diagram. This has been pointed out for the
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massless case in [17], and for the massive case with m2 ¿ ΛQCDmb in [24]. We have

confirmed that it also holds for the case m2
c ∼ ΛQCDmb. In full QCD, the one-loop fermion

propagator is

G(p) =
i

/p − mc − Σ(p)
, (2.3)

where the fermion self-energy reads

Σ(p) = /p ΣV (p2) + mc ΣS(p2). (2.4)

Analogously, the one-loop fermion propagator in SCET is

Gξ(p) =
i

u − Σξ(u, n+p)

/n−

2
. (2.5)

For simplicity we consider a frame where p⊥ = 0, such that u = n−p − m2
c/n+p. We

obtain the SCET fermion self-energy Σξ(u, n+p) by expanding the QCD propagator (2.3)

to leading order in λ and matching it with the SCET propagator (2.5), which gives the

result

Σξ(u, n+p) = uΣV (p2) +
m2

c

n+p
2
(

ΣV (p2) + ΣS(p2)
)

. (2.6)

Taking into account mass renormalization, the renormalized fermion propagator in SCET is

Ĝξ(p) =
i

u − Σξ(u, n+p) − δ(m2
c)

n+p

/n−

2
, (2.7)

where δ(m2
c) = 2mcδmc. The propagator has a pole for p2 = m2

c ⇔ u = 0, from which we

get

δ(m2
c)

n+p
= −Σξ(0, n+p) = −

m2
c

n+p
2
(

ΣV (m2
c) + ΣS(m2

c)
)

= −6
m2

c

n+p

CF αs

4π

(

1

ε
− ln

(

m2
c

µ2

)

+
4

3

) (2.8)

as the corresponding mass counterterm in the pole scheme.

2.2 SCET transition current

Unlike the Lagrangian, the SCET representation of the weak transition current involves

non-trivial hard matching coefficients. The matching onto SCET takes the form [18, 20]

eimbvxc̄(x)γµ(1 − γ5)b(x) →

3
∑

i=1

∫

ds C̃i(s,mb)(ξ̄W )(x + sn+)Γµ
i hv(x−)

=

3
∑

i=1

Ci(n+p,mb)(ξ̄W )(x)Γµ
i hv(x−) (2.9)

where hv is the heavy-quark field defined in HQET, W is a hard-collinear Wilson line, and

p is the momentum of the hard-collinear quark. The Dirac structures are chosen as

Γµ
i =

{

γµ(1 − γ5), vµ(1 + γ5),
nµ
−

n−v
(1 + γ5)

}

. (2.10)
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One calculates the hard coefficients Ci by matching the one-loop corrections to the

current from QCD to SCET. The QCD diagrams receive contributions from hard, hard-

collinear and soft momentum regions. Since SCET is constructed to reproduce the results

for the hard-collinear and soft regions, it is only the hard region of the QCD diagrams which

contributes to the matching conditions. However, the Taylor-expanded integrand for the

hard region does not depend on the hard-collinear scale m2
c , so the matching conditions are

the same as in the massless case. We can therefore read off the result for the coefficients

Ci from [18]. The matching conditions also involve a current renormalization factor, which

accounts for the divergent part of the hard diagrams. Its explicit form is [18]

ZJ = 1 +
CF αs

4π

(

−
1

ε2
+

2

ε
ln

n+p

µ
−

5

2ε

)

. (2.11)

We will need this renormalization factor in our calculation of the hadronic tensor in the

next section.

3. Hadronic tensor at one loop

In this section we calculate the one-loop corrections to the hadronic tensor for B̄ → Xc`ν̄`

decays in the shape-function region, always working to leading order in λ. The hadronic

tensor contains all the QCD effects in the semi-leptonic decay and is the starting point for

deriving differential decay distributions. We define the hadronic tensor as

W µν =
1

π
Im〈B̄(v)|T µν |B̄(v)〉, (3.1)

where we use the state normalization 〈B̄(v)|B̄(v)〉 = 1. The current correlator T µν is given

by

T µν = i

∫

d4xe−iq·xT{J†µ(x)Jν(0)}, (3.2)

where Jµ = c̄γµ(1 − γ5)b is the flavor-changing weak transition current discussed above.

The one-loop result for the hadronic tensor can be written in the factorized form

W µν =

3
∑

i,j=1

1

2
tr

(

Γ̄µ
j

/n−

2
Γν

i

1 + /v

2

)

Hij(n+p)

∫

dωJ(u − ω, n+p)S(ω), (3.3)

where p ≡ mbv − q is the jet momentum in the parton model. The hard functions Hij, the

jet function J , and the shape function S contain physics at the scales m2
b , ΛQCDmb, and

Λ2
QCD, respectively. The limits of integration in the convolution integral are determined by

the facts that the shape function has support for −Λ̄ ≤ ω < ∞ and the jet function has

support for u − ω ≥ 0.

The procedure leading to (3.3) is familiar from charmless decay and involves a two-step

matching procedure [1, 2]. In the first step, one integrates out hard fluctuations at the scale

mb by matching the hadronic tensor calculated in QCD onto that calculated in SCET. The

associated matching coefficients are the hard functions Hij. Since these coefficients take

into account the hard region of the QCD diagrams, and this region is unaffected by the
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hc s, hc hc

(a) (b) (c)

s s

(d) (e) (f)

Figure 1: The one-loop SCET graphs contributing to the current correlator. Mirror graphs are

not shown. Graph (d) shows the insertion of a counterterm from mass renormalization.

presence of a quark mass in the hard-collinear propagators, they are identical to those in

the massless case. One finds Hij = CjCi, where the Ci are the hard Wilson coefficients

defined in (2.9). In the second step, one integrates out hard-collinear fluctuations at the

scale ΛQCDmb by matching the hadronic tensor calculated in SCET onto that calculated

in HQET. The matching coefficient from this step is the jet function J . This function is

obviously more complicated than in massless SCET, since it can depend on m2
c as well as

p2. We will calculate it in the following subsection. However, the final low-energy theory is

still HQET, and the matrix element defining the shape function is the same as in charmless

decays. For this reason, we can write our result in the form (3.3).

3.1 One-loop jet function

The calculation of the one-loop jet function is conceptually identical to that for the massless

case [1, 2], and we will closely follow the treatment in [2]. The jet function is the matching

coefficient between the hadronic tensor calculated in SCET and that calculated in HQET.

The relevant SCET diagrams are shown in figure 1. We calculate them in the parton model,

using on-shell heavy quark states carrying a residual momentum k satisfying vk = 0.

We work with dimensional regularization in d = 4 − 2ε dimensions, using the Feynman

gauge. The result for the graphs involving hard-collinear gluon exchange, including the

counterterm from mass renormalization in the pole scheme (2.8), can be written as

D
(1)
hc = J

(1)
hc

[

h̄v Γ̄µ
j

n/−
2

Γν
i hv

]

, (3.4)

where

J
(1)
hc =

CF αs

4π

i

u′

{

4

ε2
+

3

ε
−

4

ε
ln

(

−n+p u′

µ2

)

+7−
π2

3
−3 ln

(

−n+p u′

µ2

)

+2 ln2

(

−n+p u′

µ2

)

+
2π2

3
− 4Li2

(

1 +
mp

u′

)

+
mp

mp+ u′
−

mp(mp+ 2u′)

(mp+ u′)2
ln

(

−
u′

mp

)

}

. (3.5)
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Here u′ = u + n−k, αs ≡ αs(µ), and mp ≡ m2
c/n+p. We have checked that our result (3.5)

agrees with the corresponding result in [24] when expanded in m2
c/p

2 and translated to the

MS scheme. The graphs involving soft gluon exchange give

D(1)
s = J (1)

s

[

h̄v Γ̄µ
j

n/−
2

Γν
i hv

]

, (3.6)

where

J (1)
s =

CF αs

4π

i

u′

{

−
2

ε2
+

2

ε
+

4

ε
ln

(

−u′

µ

)

−
3π2

2
− 4 ln

(

−u′

µ

)

− 4 ln2

(

−u′

µ

)

}

. (3.7)

The sum of the 1/ε poles in J
(1)
hc + J

(1)
s is removed by current renormalization in SCET,

which is implemented by applying a factor of Z2
J (see 2.11) to the bare current correlator.

This renormalization factor is related to the divergent part of the hard region of the QCD

diagrams, which was integrated out in the first step of matching. That it cancels the 1/ε

poles from the SCET diagrams, which are due to both hard-collinear and soft regions,

shows that we have indeed constructed the appropriate version of SCET. Moreover, the

pole structure for each individual region is the same as in the massless case. It follows

that the hard and shape functions obey the same renormalization group evolution as in

the massless case, a fact which we will use when discussing decay distributions in the next

section.

We can interpret the imaginary part of the finite pieces of the SCET diagrams as

one-loop corrections to the factorized expression (3.3). They take the form J (0) ⊗ S
(1)
part +

J (1) ⊗ S
(0)
part, where the superscript (n) denotes the n-loop correction to each function,

and the ⊗ stands for a convolution. The tree-level functions are J (0) = δ(u − ω) and

S
(0)
part = δ(ω + n−k). As in the massless case, the one-loop correction to the shape function

in the parton model is related to J
(1)
s . To show this, we take its imaginary part, which

can be expressed in terms of star distributions, defined as [25]

∫ M

≤0
duF (u)

(

1

u

)[m]

∗

=

∫ M

0
du

F (u) − F (0)

u
+ F (0) ln

(

M

m

)

, (3.8)

∫ M

≤0
duF (u)

(

ln(u/m)

u

)[m]

∗

=

∫ M

0
du

F (u) − F (0)

u
ln

u

m
+

F (0)

2
ln2

(

M

m

)

. (3.9)

It is not difficult to derive the following formulas

−
1

π
Im

[

ln
(

−
u

m

) 1

u

]

=

(

1

u

)[m]

∗

−
1

π
Im

[

ln2
(

−
u

m

) 1

u

]

= 2

(

ln(u/m)

u

)[m]

∗

−
π2

3
δ(u), (3.10)
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where to take the correct branch of the logarithms we reinstored u ≡ u + iε. We then

obtain

J (0) ⊗ S
(1)
part = S

(1)
part(u

′) =
1

π
Im

[

iJ
(1)
s,finite

]

= −
CF αs

4π

[

π2

6
δ(u′) + 4

(

1

u′

)[µ]

∗

+ 8

(

ln(u′ /µ)

u′

)[µ]

∗

]

, (3.11)

which is identical to the one-loop result calculated in HQET. The jet function is related to

the imaginary part of the finite piece of J
(1)
hc [2]. In particular, we have

J (1) ⊗ S
(0)
part = J (1)(u′, n+p) =

1

π
Im

[

iJ
(1)
hc,finite

]

. (3.12)

Using (3.10) along with

−
1

π
Im

[

1

u′

[

Li2

(

1 +
m

u′

)]]

= −

(

ln(u′ /m)

u′

)[m]

∗

+
1

u′
ln

(

1 +
u′

m

)

θ(u′), (3.13)

we find that the jet function to O(αs) is given by

J(u′, n+p) = δ(u′) +
CF αs

4π

{

(

7 − π2
)

δ(u′) − 3

(

1

u′

)[µ2/n+p]

∗

+ 4

(

ln(u′ n+p/µ2)

u′

)[µ2/n+p]

∗

+

(

u′

(mp + u′)2
−

4

u′
ln

(

1 +
u′

mp

))

θ(u′) +

(

1 +
2π2

3

)

δ(u′)

−

(

1

u′

)[mp]

∗

+ 4

(

ln(u′ /mp)

u′

)[mp]

∗

}

. (3.14)

The first line of (3.14) reduces to the result for the massless case in the limit mc → 0 [1, 2],

while the second and third lines are unique to decay into charm quarks, and vanish for

mc → 0.

We have also compared our calculation with the one-loop OPE result for b → c`ν in

[26].1 For this purpose we re-expand the factorized expression for the hadronic tensor (3.3)

in αs. Using the notation of [2], the component W1 of the hadronic tensor, for instance,

can be written as

W1

2
=

1

n+p

[

H11 δ(u′) + J (1)(u′, n+p) + S
(1)
part(u

′)
]

+ O(α2
s) , (3.15)

where the soft and jet contribution are given in (3.11) and (3.14), and the hard contribution

reads [2]

H11 = 1 +
αsCF

4π

(

−4L2 + 10L − 4 ln y −
2 ln y

1 − y
− 4Li2(1 − y) −

π2

6
− 12

)

(3.16)

with y = n+p/mb and L = ln [ymb/µ]. This has to be compared with the corresponding

expression in [26]

W
[26]

3 = π m2
b W1 , (3.17)

1For the comparison with earlier calculations in [27, 28] see the detailed discussion in [26].
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where the result for W
[26]

3 has to be expanded, using the SCET power counting m2
c/m

2
b ∼

ΛQCD/mb ¿ 1. After some tedious, but straight-forward manipulations, we indeed find

agreement with (3.15). The comparison for the remaining components W4,5 of the hadronic

tensor is much easier because at order αs they receive contributions from the hard functions

only. Therefore the limit mc/mb → 0 in the corresponding expressions in [26] can be

performed directly to recover the results for W4,5 from [2].

4. The partially integrated U spectrum

From the results of the previous section we can derive any differential decay distribution.

We focus here on the U spectrum, because of its relation to the P+ spectrum from charmless

decays. We pointed out in the last section that the hard and shape functions are unaffected

by the presence of the charm-quark mass, and thus obey the same renormalization group

equations as in the charmless case. In the remainder of the paper, we will work with the

renormalization-group improved formulas derived in [2]. After integrating over the lepton

energy and neglecting higher-order terms in λ, the doubly differential spectrum in the

variables u and y is given by

1

Γc

d2Γc

du dy
= eVH(mb,µi)

∫ u

−Λ̄
dω y2−a(6 − 4y)H(y)J(u − ω,mby, µi)S(ω, µi) , (4.1)

where −Λ̄ ≤ u ≤ ymb − m2
c/ymb and mc/mb ≤ y ≤ 1. Note that after resummation all of

the functions are to be evaluated at the intermediate scale µi ∼ mc. We have introduced

the renormalization-group factors

a =
16

25
ln

αs(µi)

αs(mb)
, (4.2)

and VH(mb, µi), which resum logarithms between the hard and the jet scale. The exact

form of VH can be found in [2], and the hard function H can be derived from the functions

Hij in the same reference. The total b → c rate to order αs(mb) in the OPE is given by [29]

Γc = |Vcb|
2

(

G2
F m5

b

192π3

)[

f

(

m2
c

m2
b

)

+
CF αs(mb)

4π

(

25

2
− 2π2

)

g

(

m2
c

m2
b

)]

. (4.3)

At leading order in λ we can set the phase-space factors f, g to unity, although higher-order

corrections may be important numerically, as we shall discuss in section 4.3.

It is useful to change from partonic to hadronic variables and define2

U = u + Λ̄, ω̂ = ω + Λ̄, Ŝ(ω̂) = S(ω) . (4.4)

The relation between the hadronic momenta Pµ and the partonic momenta pµ is given by

n±P = n±p + Λ̄, where Λ̄ = MB − mb. This leads to

U = n−P −
m2

c

n+P
+ O(λ4). (4.5)

2Notice that ω is defined with the opposite sign in [2], whereas our convention for Ŝ(ω̂) coincides.
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Figure 2: Illustration of the shape-function region singled out by the cut on the variable U . The

light-grey region shows the physical phase space M2
D

/n+P ≤ n
−

P ≤ n+P ≤ MB. The dark-grey

part shows the shape-function region with ∆ = 0.65 GeV and mc = 1.36 GeV.

To stay in the shape-function region, we need to restrict the phase-space integration to

values of U ∼ λ2mb. In order to preserve a close correspondence with the treatment of the

B̄ → Xu`ν̄` spectrum in [2], we introduce a cut U < ∆, with ∆ being around 600 MeV. The

effect of this cut on the physical phase space in the variables P− = n+P and P+ = n−P is

illustrated in figure 2 for typical values ∆ = 0.65 GeV and mc = 1.36 GeV. The fraction

of events with U < ∆ is then given by

Fc(∆) =
Γc(U < ∆)

Γc

= eVH

∫ ∆

0
dω̂

∫ 1

mc
mb

dy

∫ ∆

0
dU y2−a(6 − 4y)H(y)J(U − ω̂, ymb) Ŝ(ω̂). (4.6)

A short calculation shows that the lower limit of the integration over y can be set to zero,

up to terms of order (mc/mb)
3−a. After making this simplification, the integration limits

are identical to those in b → u decays. In fact, the integrals over the αs corrections from

the hard function H and the first line of (3.14) are identical to the charmless case. We will

give explicit results below.

The new terms relevant to decay into charm quarks are contained in the last two lines

of (3.14). After integration over U the result for these terms is

eVH

∫ ∆

0
dω̂Ŝ(ω̂)

∫ 1

0
dy y2−a(6 − 4y)

CF αs(µi)

4π

{

2π2

3
− ln(y∆ω̂) + 2 ln2(y∆ω̂)

+
1

1 + y ∆ω̂
+ ln(1 + y∆ω̂) + 4Li2(−y∆ω̂)

}

,

(4.7)

where ∆ω̂ = (∆ − ω̂)mb/m
2
c . The integrals over y can be evaluated in terms of the master

integrals

G1(n, x) =

∫ 1

0
dy

yn

1 + xy
=

2F1(1, n + 1;n + 2;−x)

n + 1
, (4.8)

G2(n, x) =

∫ 1

0
dy yn ln(1 + xy) =

1

n + 1

(

ln(1 + x) −
1

n + 1

)

+
G1(n, x)

n + 1
, (4.9)
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G3(n, x) =

∫ 1

0
dy ynLi2(−xy) =

Li2(−x)

n + 1
+

G2(n, x)

n + 1
, (4.10)

where the hypergeometric function 2F1 has a series expansion

2F1(a1, a2; a3; z) =

∞
∑

k=0

(a1)k (a2)k
(a3)k

zk

k!
, (ai)k =

Γ(ai + k)

Γ(ai)
. (4.11)

To express the final results in a compact way, we introduce

gn(a,X) =
6Gn(2 − a,X) − 4Gn(3 − a,X)

T (a)
, (4.12)

and make use of the functions defined in [2]

f2(a) = −
30 − 12a + a2

(6 − a)(4 − a)(3 − a)
, f3(a) =

2(138 − 90a + 18a2 − a3)

(6 − a)(4 − a)2(3 − a)2
,

T (a) =
2(6 − a)

(4 − a)(3 − a)
. (4.13)

The final result can be written as Fc = Fu + Fm. The fraction Fu is the result for b → u

decays

Fu(∆) = T (a)eVH(mb,µi)

∫ ∆

0
dω̂ Ŝ(ω̂, µi) fu

(

mb(∆ − ω̂)

µ2
i

)

, (4.14)

fu(x) = 1 +
CF αs(mb)

4π
H(a)

+
CF αs(µi)

4π

[

2 ln2 x +
(

4f2(a) − 3
)

ln x +
(

7 − π2 − 3f2(a) + 2f3(a)
)]

.

An expression for H(a) can be found in [2]. The fraction Fm is an additional piece unique

to decay into charm quarks, which vanishes when mc → 0. In the pole scheme, it is given

by

Fm(∆) = T (a) eVH (mb,µi)

∫ ∆

0
dω̂ Ŝ(ω̂, µi) fm

(

mb(∆ − ω̂)

m2
c

)

, (4.15)

fm(x) =
CF αs(µi)

4π

[

2 ln2 x +
(

4f2(a) − 1
)

ln x

+
2π2

3
− f2(a) + 2f3(a) + g1(a, x) + g2(a, x) + 4g3(a, x)

]

.

From the partially integrated spectrum Fc(∆) we can obtain the corresponding U spectrum

by differentiation, which results in

1

Γc

dΓc

dU
= T (a) eVH(mb,µi)

∫ U

0
dω̂

(

d

dω̂
Ŝ(ω̂, µi)

)[

fu

(

mb(U − ω̂)

µ2
i

)

+ fm

(

mb(U − ω̂)

m2
c

)]

(4.16)

where we have used integration by parts and Ŝ(0) = 0.
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4.1 Change of charm-mass definition

So far, our analysis has been performed with mc defined in the pole scheme. The effect of

changing the charm-mass definition according to

mc → m̃c = mc − δm ,

where δm ∼ mcαs(µi), is two-fold. First, the input value for the charm-quark mass in

Fm(∆) is changed. Since the explicit charm-mass dependence in Fm is already an O(αs)

correction, this effect is formally of order α2
s. Second, the jet function receives a perturba-

tive correction proportional to δm. It can be obtained from the tree-level jet function by

taking into account the appropriate shift in the spectral variable,

δ(u − ω) ' δ (ũ − ω) −
2m̃cδm

n+p
δ′(ũ − ω), (4.17)

where ũ = n−p − m̃2
c/n+p is defined using the new mass definition. Inserting the extra

term into (4.6), one obtains an additional contribution to Fc(∆),

Fc(∆) → Fc(∆) − eVH

∫ ∆

0
dω̂

∫ 1

0
dy

∫ ∆

0
dU y2−a(6 − 4y)

2m̃cδm

ymb
δ′(U − ω̂) Ŝ(ω̂)

= Fc(∆) − eVH T (a + 1)
2m̃cδm

mb
Ŝ(∆) . (4.18)

In order to see the scheme-independence of physical observables to a fixed order in αs,

one has to keep in mind that the relation between the hadronic momenta and the spectral

variable U is also changed. Therefore, the result for Fc(∆) in two different mass schemes

should be compared at two different values of the cut-off parameter ∆,

Ũ = n−P −
m̃2

c

n+P
< ∆̃ ' ∆ +

2m̃cδm

n+P
, (4.19)

such that F̃c(∆̃) in the new scheme reads

F̃c(∆̃) = Fu(∆̃) + Fm̃(∆̃) − eVH T (a + 1)
2m̃cδm

mb
Ŝ(∆̃) . (4.20)

Expanding the upper limit ∆̃ around ∆ in the leading-order term in Fu(∆̃) and neglecting

terms of order α2
s, we explicitly find the scheme-independence of our result,

F̃c(∆̃) = Fc(∆) + O(α2
s) . (4.21)

Still, the convergence of the perturbative series at a given value of ∆ might be rather

different for different mass definitions. In addition to the pole scheme, we will consider two

further examples, namely

• the potential-subtracted (PS) scheme, where [30]

mPS
c (µf ) = mc −

CF αs(µi)

π
µf + O(α2

s) (4.22)

with µf ' 1 GeV,
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Figure 3: Predictions for partially integrated spectra in inclusive semi-leptonic b → c decays:

Left: NLO prediction for Fc(∆) using the the default scenario S5 [2] in the PS scheme (solid line)

compared to the MS scheme (long-dashed line) and the pole scheme (short-dashed line). Also

plotted is the LO result (thick grey line). Right: NLO prediction for Fc(∆) using the default

scenario S5 in the PS scheme (solid line) compared to scenarios S1, S3, S7, S9 (dashed lines).

• the MS scheme, where

m̄c(µi) = mc

[

1 +
CF αs(µi)

4π

(

3 ln
m2

c

µ2
i

− 4

)

+ O(α2
s)

]

. (4.23)

4.2 Numerical predictions

In this section we study the numerical predictions for Fc(∆), taking into account mass-

scheme and shape-function dependence. We start by summarizing the parameter val-

ues used in the subsequent analysis. The hard scale is fixed to the b-quark mass, mb =

4.65 MeV. The default value for the intermediate (jet) scale is µi = 1.5 GeV. We use

the PS scheme as our default mass scheme, taking mPS
c (µf = 1 GeV) = 1.36 GeV.

The charm-quark pole mass is taken as 1.65 GeV, and the MS mass at the jet scale as

m̄c(µi) = 1.20 GeV. We use 2-loop running for αs with Λ
(nf =4)
QCD = 345 MeV, corresponding

to αs(mb) = 0.22 and αs(µi) = 0.37.

For the numerical estimate we have to specify a model for the shape function, which

we take from [2]:3

Ŝ(ω̂, µi) =
1

Λ

[

1 −
CF αs(µi)

4π

(

π2

6
− 1

)]

bb

Γ(b)

(

ω̂

Λ

)b−1

exp

(

−b
ω̂

Λ

)

. (4.24)

We use Λ = 0.685 GeV and b = 2.93 as our default (scenario “S5” in [2]). In figure 3

we compare the results for different mass schemes and different input shape functions as a

function of the cut-off ∆. The following observations can be made:

• For values of ∆ ∼ 600 MeV, the NLO corrections are large and positive.

• Above some critical value ∆max, the NLO corrections become so large that the frac-

tion Fc exceeds 1, and therefore our result should not be trusted anymore.

3Notice that we have chopped off the radiative tail in Ŝ(ω̂), which does not contribute for the value of

∆ that we are considering.
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Figure 4: Effect of kinematic power corrections proportional to Ŝ(ω̂): The curve shows the NLO

prediction for Fc(∆) including the power corrections to the tree-level result in (4.25), normalized

to the leading-power result (4.14), (4.15).

• The critical value ∆max amounts to about 480 MeV in the pole scheme, 700 MeV in

the PS scheme, and 860 MeV in the MS scheme.

• The model dependence from the input shape function amounts to an uncertainty of

about 25%.

4.3 Power corrections

Our NLO calculation has been restricted to leading power in the 1/mb expansion. Power

corrections arise from two sources. First, one encounters new non-perturbative structure

in the form of sub-leading shape functions. Second, there are kinematic power corrections

proportional to m2
c/m

2
b ∼ λ2 and u ∼ λ2mb. The phase-space integration leads to loga-

rithms ln(m2
c/m

2
b) which can numerically enhance some of the power-suppressed terms.4

Whereas the estimate of sub-leading shape function effects is model dependent, the kine-

matic corrections multiplying the leading-order shape function can be calculated explicitly.

We shall do this at tree level only, where we can use the results of [16] to find

1

Γc

dΓc

dU
=

{

1 −
U − Λ̄

mb

(

14

3
+

m2
c

m2
b

(

215

6
+ 3 ln

m2
c

m2
b

))

+ O(u2, λ5)

}

Ŝ(U)

+ sub-leading shape functions . (4.25)

The omitted terms are negligible in the portion of phase-space we are interested in. The

numerical effect of the power corrections in (4.25) is plotted in figure 4. We see that Fc(∆)

is enhanced by about 20% at ∆ = 0.65 GeV. Since we cannot control the remaining power

corrections from sub-leading shape functions in a model-independent way, we consider this

number as a rough estimate for the magnitude of the systematic uncertainties associated

with power corrections.

4These phase-space logarithms can be resummed using renormalization-group techniques, see [31].
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5. Relating b → c and b → u decays

For the extraction of the CKM parameter |Vub| one would like to have a shape-function-

independent relation between the B̄ → Xu`ν̄` and B̄ → Xc`ν̄` decay spectra. In what

follows we focus on a relationship between the P+ spectrum in b → u decays and the U

spectrum in b → c decays. This relation can be obtained in a similar way as discussed for

the comparison of B̄ → Xsγ and B̄ → Xu`ν̄` in [12]. In the present case, this involves

constructing a weight function W such that

∫ ∆

0
dP+

dΓu

dP+
=

Γu

Γc

∫ ∆

0
dU W (∆, U)

dΓc

dU
'

|Vub|
2

|Vcb|2

∫ ∆

0
dU W (∆, U)

dΓc

dU
, (5.1)

where we have used that Γu/Γc = |Vub/Vcb|
2 to leading power in λ. By measuring the

partial decay rate Γu(P+ < ∆) in b → u decays, as well as the dΓc/dU spectrum in b → c

decays, we can determine |Vub|. The theoretical input is the weight function W , which we

can calculate from the results in (4.15,4.20):

W (∆, U) = 1 − fm

(

mb(∆ − U)

(mPS
c )2

)

+
CF αs(µi)

4π

T (a + 1)

T (a)

8µfmPS
c

mb
δ(∆ − U)

+ O(α2
s) + power corrections, (5.2)

in the PS scheme. We do not attempt to include power corrections here, but must be aware

that they add a systematic uncertainty of at least 20%.

At the moment, we do not have explicit experimental information on the U spectrum in

B̄ → Xc`ν̄`, so to illustrate how our method works we will have to rely on some theoretical

input. In the following subsections we will consider two approaches: In the first we will

use the theoretical prediction (4.16) for the b → c spectrum to obtain the b → u spectrum

from the weight-function analysis with (5.2). In the second approach, we will construct a

simple toy spectrum which takes into account possible charm-resonance effects.

5.1 Numerical analysis using theoretical b → c spectrum

In this sub-section we carry out the weight-function analysis using the theoretical b →

c spectrum from (4.16) as input. This will help us estimate some of the perturbative

uncertainties inherent to our approach. We start by constructing the partially integrated

b → u spectrum Fu(∆) from the theoretical b → c spectrum (4.16) and the weight function

W (∆, U), using the shape-function model from (4.24). In figure 5 we compare the so-

obtained results for Fu(∆) in the PS, pole, and MS schemes. We also show the result of

the direct computation from (4.14). The difference between the curves is formally an O(α2
s)

effect, and thus gives a rough measure of higher-order perturbative effects. We observe that

in the pole scheme this effect is quite large for values of ∆ below 700 MeV or so. At our

reference point ∆ = 650 MeV we obtain

Fu(0.65 GeV) = 0.71 from (4.16) and (5.1), PS scheme ,

Fu(0.65 GeV) = 0.62 from (4.16) and (5.1), pole scheme ,

Fu(0.65 GeV) = 0.76 from (4.16) and (5.1), MS scheme , (5.3)
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Figure 5: Predictions for Fu(∆) using the weight function (5.2) and the theoretical b → c

spectrum (4.16) on the basis of the shape-function model S5 in (4.24). Solid line: PS scheme.

Long-dashed line: MS scheme. Short-dashed line: Pole scheme. For comparison, we also show the

direct computation of Fu(∆) from (4.14) (thick grey line).
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Figure 6: Predictions for Fu(∆) using the weight function (5.2) and the theoretical b → c

spectrum (4.16) on the basis of the shape-function model S5 in (4.24). The left plot shows the scale

dependence (1 GeV< µi < 2.25 GeV) of the result using the PS scheme. The right plot shows the

effect of varying mPS
c

by ±0.15 GeV around its default value.

compared to

Fu(0.65 GeV) = 0.79 from (4.14) , (5.4)

from which we deduce a residual scheme dependence for Fu(∆) of about 10-15%.

In figure 6 we investigate the explicit µi and mc dependence induced by the weight

function (to isolate these effects, we fix mc and µi in the theoretical expression (4.16) for

the b → c spectrum). The charm-mass dependence is a small effect, less than 10% for

reasonably large values of ∆. The dependence on the factorization scale µi is still sizeable,

about 10-15%. The perturbative uncertainties related to the scheme and factorization-scale

dependence could be resolved by calculating the α2
s corrections to the jet function in the

massive case.

5.2 Numerical analysis using a toy spectrum

The purpose of this sub-section is to point out some aspects of the weight-function analysis

that would be important when dealing with the physical b → c spectrum. A distinctive

feature of this spectrum is that that the lowest-lying spin-symmetry doublet of charmed
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states D and D∗ already makes up about 80% of the semi-leptonic rate. For an on-shell

D(D∗) meson we formally have

UD(D∗) =
M2

D(D∗) − m2
c

n+P
¿ ∆ (n+P ∼ mb) . (5.5)

Therefore, about 80% of the U spectrum is centered around “small” values of U (we put

“small” in quotation marks, because numerically (M2
D − m2

c)/mb ' 350 MeV in the PS

scheme).

We will perform the weight-function analysis on a toy spectrum which takes this res-

onance structure into account. We construct this spectrum by assuming that the doubly-

differential decay spectrum is concentrated along the D/D∗-pole and modulated by some

function f(y),

1

Γc

d2Γc

d(n−P )dy
'

mb y2

M
2
D

f(y) δ

(

y −
M

2
D

n−P mb

)

(5.6)

where
∫ 1
0 dy f(y) = 1, and MD = 1.975 GeV is a weighted average of the D and D∗ masses.

We can derive the U spectrum (in a given mass scheme) from this model by taking

n−P = U +
m2

c

ymb

and performing the integral over y, which yields

1

Γc

dΓc

dU
'

M
2
D − m2

c

mbU2
f

(

M
2
D − m2

c

mbU

)

θ

(

U −
M

2
D − m2

c

mb

)

. (5.7)

For the following discussion, we use a simple parameterization

f(y) =
Γ(2 + α + β)

Γ(1 + α)Γ(1 + β)
yα (1 − y)β (5.8)

and fix the parameters α = 3.66 and β = −0.51 by requiring that Fc(∆) at ∆ = 650 MeV,

and dΓc/dU at U = 550 MeV coincide with the theoretical expressions in the PS scheme.5

In figure 7 we compare the U spectrum from our toy model with the theoretical pre-

diction in the PS scheme, using the shape-function model (4.24) as input. Figure 8 shows

predictions for Fu(∆) obtained by applying the weight-function analysis to our toy spec-

trum, as well as the theoretical curve obtained from (4.14). We see that at smaller values

of ∆ the sensitivity to the resonance structure and dependence on the mass scheme is

sizeable. On the other hand, for larger values of ∆ the resonance structure is washed out,

and the predictions obtained in different mass schemes converge. The sensitivity to the

resonance structure at moderate values of ∆ means that the phenomenologically acceptable

window for ∆ in the shape-function approach is smaller than in the b → u case, where the

5The reference point for Fc(∆) is sufficiently below the critical value ∆max = 700 MeV, and that for

dΓc/dU is sufficiently above the exclusive threshold Umin ' 450 MeV.
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Figure 7: The U spectrum in B̄ → Xc`ν̄` decays: Theoretical prediction using the default

model S5 for the shape function (dashed line) vs. phenomenological model (solid line) assuming the

dominance of a single D-meson pole. The model parameters are adjusted to reproduce the value of

the spectrum (left) at U = 550 MeV as well as the integrated spectrum (right) at ∆ = 650 MeV.
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Figure 8: Predictions for the partial rate Fu(∆) in B̄ → Xu`ν̄` from a toy spectrum in B̄ → Xc`ν̄`

using the NLO weight function. Comparison of PS scheme (solid line), pole scheme (dotted), and

MS scheme (dashed) with the theoretical result (4.14) using scenario S5 (thick grey line).

contributions from the charmless ground states π, η, ρ and ω add up to only about 25%

of the total semi-leptonic b → u rate and are moreover centered at values of P+ not much

larger than 100 MeV.

These observations have important implications for extracting |Vub| by relating par-

tially integrated b → u and b → c decay spectra. To apply our results to b → c decays,

it is crucial that the cut-off parameter ∆ be sufficiently large to avoid sensitivity to the

shape of the spectrum in the resonance region. To apply them to b → u decays, ∆ must be

small enough to suppress the charm background, which sets in at ∆ ∼ 650 MeV. Balancing

between the two cases restricts the cut-off parameter ∆ to a rather small window.

We also observe that the weight-function analysis with our toy model systematically

underestimates the result for Fu(∆) compared to the “true” result (4.14). For instance, at

our reference point ∆ = 0.65 GeV, we have

Fu(0.65 GeV) = 0.79 from (4.14) , (5.9)

Fu(0.65 GeV) = 0.55 from toy model and (5.1), PS scheme . (5.10)

This is due at least in part to the crudeness of our model, which completely ignores the

non-negligible continuum contribution. While we could refine our model to take this into

– 18 –
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account, we think that such fine-tuning is best resolved by experimental input.

6. Conclusions

We analyzed perturbative corrections to B̄ → Xc`ν̄` decays using the power counting

mc ∼
√

ΛQCDmb for the charm-quark mass. This treatment implies that a certain class of

partially integrated b → c decay spectra is sensitive to the non-perturbative shape-function

effects familiar from B̄ → Xu`ν̄` decays. With the aid of soft-collinear effective theory, we

showed that the one-loop corrections to such decay spectra can be written as a convolution

of hard, jet, and shape functions. The hard and shape functions are identical to those

found in the factorization formula for B̄ → Xu`ν̄` decays, but the jet function depends

explicitly on mc and hence receives non-trivial corrections unique to decay into charm

quarks. We calculated these corrections at NLO in perturbation theory and at leading

order in the 1/mb expansion, and derived a shape-function independent relation between

partially integrated B̄ → Xc`ν̄` and B̄ → Xu`ν̄` decay spectra. This relation can be used

to determine |Vub|.

Numerical studies raised some issues related to this treatment. First, the portion of

phase-space where the shape-function approach is valid is somewhat smaller in B̄ → Xc`ν̄`

decays than in the charmless case. Second, although the results are formally independent of

the renormalization scheme used to define the charm-quark mass, the numerical dependence

on the mass scheme is significant. Finally, the structure of power corrections is slightly

more complicated than in the charmless case, since one encounters not only sub-leading

shape functions, but also kinematic power corrections. Some of the power corrections are

enhanced by large logarithms ln(m2
c/m

2
b).

Our study may help improve the understanding of inclusive B decays in the shape-

function region. On the one hand, it provides additional information for the extraction

of |Vub|. On the other hand, it may offer an additional testing ground for theoretical

methods based on factorization and soft-collinear effective theory. To explore these ideas

further would require experimental information on the partially integrated B̄ → Xc`ν̄`

decay spectrum used in our analysis.
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